A computational study of stent performance by considering vessel anisotropy and residual stresses.

نویسندگان

  • A Schiavone
  • L G Zhao
چکیده

Finite element simulations of stent deployment were carried out by considering the intrinsic anisotropic behaviour, described by a Holzapfel-Gasser-Ogden (HGO) hyperelastic anisotropic model, of individual artery layers. The model parameters were calibrated against the experimental stress-stretch responses in both circumferential and longitudinal directions. The results showed that stent expansion, system recoiling and stresses in the artery layers were greatly affected by vessel anisotropy. Following deployment, deformation of the stent was also modelled by applying relevant biomechanical forces, i.e. in-plane bending and radial compression, to the stent-artery system, for which the residual stresses generated during deployment were particularly accounted for. Residual stresses were found to have a significant influence on the deformation of the system, resulting in a re-distribution of stresses and a change of the system flexibility. The results were also utilised to interpret the mechanical performance of stent after deployment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and dose calculations of a pure beta emitting 32P coated stent for intracoronary brachytherapy by Monte Carlo code

Background: Recently, different investigators have studied the possibility of radiation therapy in restenosis prevention and have shown promising results. In this study a unique radioactive source for intra vascular brachytherapy (IVBT) was investigated. The two-dimensional dose distribution in water for a 32P IVBT stent has been calculated. The pure beta emitter source 32P has been co...

متن کامل

Fabrication of Spiral Stent with Superelastic/ Shape Memory Nitinol Alloy for Femoral Vessel

Stent is a metal mesh tube for opening the obstructed vessels of the body. Ni-Ti alloy is a suitable metal for fabrication of stent due to its potential for applying the appropriate stress and strain to the vessel walls. In this study, super-elastic Nitinol wire was used to build stent samples usable to open femoral vessel. Ageing was performed at 500°C for different periods of time to determin...

متن کامل

Frequency Response Analysis of a Capacitive Micro-beam Resonator Considering Residual and Axial Stresses and Temperature Changes Effects

This paper presents a study on the frequency response of a capacitive micro-beam resonator under various applied stresses. The governing equation whose solution holds the answer to all our questions about the mechanical behavior is the nonlinear electrostatic equation. Due to the nonlinearity and complexity of the derived equation analytical solution are not generally available; therefore, the ...

متن کامل

Parametric investigation of autofrettage process in thick spherical vessel made of functionally graded materials

In this paper, the effect of autofrettage process parameters on the ultimate pressure that functionally graded spherical vessel can tolerate are investigated. FGM properties and autofrettage pressure are considered as important parameters. Assumptions are variation of properties of FGM in radial direction, the residual stress in the absence of Bauschinger effect with the operation of variable m...

متن کامل

Application of Pulse Method to Incremental Slitting Measurement of Residual Stresses in Laminated Composites

In this research, the incremental slitting method was employed to determine throughthickness residual stress profile of a carbon/epoxy laminate. The method involves measuring strains at the back surface of the stressed specimen, while a narrow slit is cut by a CNC milling machine progressively from the top surface of the specimen. "Pulse Method" was selected as the computational approach for th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Materials science & engineering. C, Materials for biological applications

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2016